Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.11.30.23299208

ABSTRACT

BackgroundProduction of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and lower-middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A public sector manufacturer in Vietnam assessed the immunogenicity of NDV-HXP-S (COVIVAC) relative to an authorized vaccine. MethodsThis phase 2 stage of a randomised, observer-blind, controlled, phase 1/2 trial was conducted at three community health centers in Thai Binh Province, Vietnam. Healthy males and non-pregnant females, 18 years of age and older, were eligible. Participants were randomised by age (18-59, [≥]60 years) to receive one of three treatments by intramuscular injection twice, 28 days apart: COVIVAC at 3 {micro}g or 6 {micro}g, or AstraZeneca COVID-19 vaccine VAXZEVRIA. Participants and personnel assessing outcomes were masked to treatment. The main outcome was the induction of 50% neutralising antibody titers against vaccine-homologous pseudotyped virus 14 days (day 43) and 6 months (day 197) after the second vaccination by age group. The primary immunogenicity and safety analyses included all participants who received one dose of the vaccine. ClinicalTrials.gov NCT05940194. FindingsDuring August 10-23, 2021, 737 individuals were screened, and 374 were randomised (124-125 per group); all received dose one, and three missed dose two. On day 43, the geometric mean fold rise of 50% neutralising antibody titers for subjects age 18-59 years was 31{middle dot}20 (COVIVAC 3 g N=82, 95% CI 25{middle dot}14-38{middle dot}74), 35{middle dot}80 (COVIVAC 6 g; N=83, 95% CI 29{middle dot}03-44{middle dot}15), 18{middle dot}85 (VAXZEVRIA; N=82, 95% CI 15{middle dot}10-23{middle dot}54), and for subjects age [≥]60 years was 37{middle dot}27 (COVIVAC 3 g; N=42, 95% CI 27{middle dot}43-50{middle dot}63), 50{middle dot}10 (COVIVAC 6 g; N=40, 95% CI 35{middle dot}46-70{middle dot}76), 16{middle dot}11 (VAXZEVRIA; N=40, 95% CI 11{middle dot}73-22{middle dot}13). Among subjects seronegative for anti-S IgG at baseline, the day 43 geometric mean titer ratio of neutralising antibody (COVIVC 6 g/VAXZEVRIA) was 1{middle dot}77 (95% CI 1{middle dot}30-2{middle dot}40) for subjects age 18-59 years and 3{middle dot}24 (95% CI 1{middle dot}98-5{middle dot}32) for subjects age [≥]60 years. On day 197, the age-specific ratios were 1{middle dot}11 (95% CI 0{middle dot}51-2{middle dot}43) and 2{middle dot}32 (0{middle dot}69-7{middle dot}85). Vaccines were well tolerated; reactogenicity was predominantly mild and transient. The percentage of subjects with unsolicited adverse events (AEs) during 28 days after vaccinations was similar among treatments (COVIVAC 3 g 29{middle dot}0%, COVIVAC 6 g 23{middle dot}2%, VAXZEVRIA 31{middle dot}2%); no vaccine-related AE was reported. InterpretationConsidering that induction of neutralising antibodies against SARS-CoV-2 has been correlated with the efficacy of COVID-19 vaccines, including VAXZEVRIA, our results suggest that vaccination with COVIVAC may afford clinical benefit matching or exceeding that of the VAXZEVRIA vaccine. FundingVietnams Institute of Vaccines and Medical Biologicals (including support from Vietnams national COVID-19 vaccine fund and a charitable contribution from the Thien Tam fund of Vin group), Coalition for Epidemic Preparedness Innovations, a charitable contribution from Bayer AG, US National Institutes of Health.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.25.564014

ABSTRACT

T cells are involved in protective immunity against numerous viral infections. Limited data have been available regarding roles of human T cell responses controlling SARS-CoV-2 viral clearance in primary COVID-19. Here, we examined longitudinal SARS-CoV-2 upper respiratory tract viral RNA levels and early adaptive immune responses from 95 unvaccinated individuals with acute COVID-19. Acute SARS-CoV-2-specific CD4 and CD8 T cell responses were evaluated in addition to antibody responses. Most individuals with acute COVID-19 developed rapid SARS-CoV-2-specific T cell responses during infection, and both early CD4 T cell and CD8 T cell responses correlated with reduced upper respiratory tract SARS-CoV-2 viral RNA, independent of neutralizing antibody titers. Overall, our findings indicate a distinct protective role for SARS-CoV-2-specific T cells during acute COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.27.23287773

ABSTRACT

Inadequate immune response to vaccination is a long-standing problem faced by immunosuppressed kidney transplant recipients (KTRs), requiring novel strategies to improve vaccine efficacy. In this study, the potential of mechanistic target of rapamycin inhibitors (mTORi) to improve T cell responses to COVID-19 vaccination was investigated. Following primary vaccination with adenoviral (ChAdOx1) or mRNA (BNT162b2) COVID-19 vaccines, KTRs receiving rapamycin demonstrated T cell responses greater than those of healthy individuals, characterized by increased frequencies of vaccine-specific central memory, effector memory and TEMRA T cells, in both the CD4+ and CD8+ compartments. Relative to standard-of-care triple therapy, mTORi-based therapy was associated with a 12-fold greater functional T cell response to primary vaccination of KTRs. The use of rapamycin to augment T cell responses to COVID-19 booster (third dose) vaccination was next investigated in a randomized, controlled trial. Immunosuppression modification with rapamycin was feasible and well-tolerated, but did not improve vaccine-specific T cell responses in this cohort. To understand the parameters for effective use of rapamycin as a vaccine adjuvant, mice were treated with rapamycin before primary or booster vaccination with ancestral and/or Omicron COVID-19 vaccines. Supporting the findings from KTRs, significant enhancement of functional and stem-like memory T cell responses was observed when rapamycin was administered from the time of primary, rather than booster, vaccination. Collectively, a positive effect of mTOR inhibitors on vaccine-induced T cell immunity against COVID-19 in humans was demonstrated.


Subject(s)
COVID-19
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.05.527215

ABSTRACT

SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Breakthrough Pain
5.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.25.525485

ABSTRACT

Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, SARS-CoV-2 immunity has been studied extensively in blood. However, the capacity of peripheral vaccination to generate sustained humoral and cellular immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Bronchoalveolar lavage samples obtained from vaccinated donors with or without prior infection revealed enrichment of spike-specific antibodies, class-switched memory B cells and T cells in the lung mucosa compared to the periphery in the setting of hybrid immunity, whereas in the context of vaccination alone, local anti-viral immunity was limited to antibody responses. Spike-specific T cells persisted in the lung mucosa for up to 5 months post-vaccination and multi-specific T cell responses were detected at least up to 11 months post-infection. Thus, durable lung mucosal immunity against SARS-CoV-2 seen after hybrid exposure cannot be achieved by peripheral vaccination alone, supporting the need for vaccines targeting the airways.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
6.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.16.23284626

ABSTRACT

The estimated mortality rate of the SARS-CoV-2 pandemic varied greatly around the world with multiple countries in East, Central, and West Africa having significantly lower rates of COVID-19 related fatalities than many resource-rich nations with significantly earlier wide-spread access to life-saving vaccines. One possible reason for this lower mortality could be the presence of pre-existing cross-reactive immunological responses in these areas of the world. To explore this hypothesis, stored peripheral blood mononuclear cells (PBMC) from Ugandans collected from 2015-2017 prior to the COVID-19 pandemic (n=29) and from hospitalized Ugandan COVID-19 patients (n=3) were examined using flow-cytometry for the presence of pre-existing SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell populations using four T-cell epitope mega pools. Of pre-pandemic participants, 89.7% (26/29) had either CD4+ or CD8+, or both, SARS-CoV-2 specific T-cell responses. Specifically, CD4+ T-cell reactivity (72.4%) and CD8+ T-cell reactivity (65.5%) were relatively similar, and 13 participants (44.8%) had both types of cross-reactive types of T-cells present. There were no significant differences in response by sex in the population. The rates of cross-reactive T-cell populations in these Ugandans is higher than previous estimates from resource-rich countries like the United States (20-50% reactivity). It is unclear what role, if any, this cross-reactivity played in decreasing COVID-19 related mortality in Uganda and other African countries, but does suggest that a better understanding of global pre-existing immunological cross-reactivity could be an informative data of epidemiological intelligence moving forward.


Subject(s)
COVID-19
7.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2487028.v1

ABSTRACT

Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, SARS-CoV-2 immunity has been studied extensively in blood. However, the capacity of peripheral vaccination to generate sustained humoral and cellular immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Bronchoalveolar lavage samples obtained from vaccinated donors with or without prior infection revealed enrichment of spike-specific antibodies, class-switched memory B cells and T cells in the lung mucosa compared to the periphery in the setting of hybrid immunity, whereas in the context of vaccination alone, local anti-viral immunity was limited to antibody responses. Spike-specific T cells persisted in the lung mucosa for up to 5 months post-vaccination and multi-specific T cell responses were detected at least up to 11 months post-infection. Thus, durable lung mucosal immunity against SARS-CoV-2 seen after hybrid exposure cannot be achieved by peripheral vaccination alone, supporting the need for vaccines targeting the airways.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
8.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.04.522794

ABSTRACT

The Coronavirus (CoV) family includes a variety of viruses able to infect humans. Endemic CoVs that can cause common cold belong to the alphaCoV and betaCoV genera, with the betaCoV genus also containing subgenera with zoonotic and pandemic concern, including sarbecoCoV (SARS-CoV and SARS-CoV-2) and merbecoCoV (MERS-CoV). It is therefore warranted to explore pan-CoV vaccine concepts, to provide adaptive immune protection against new potential CoV outbreaks, particularly in the context of betaCoV sub lineages. To explore the feasibility of eliciting CD4+ T cell responses widely cross-recognizing different CoVs, we utilized samples collected pre-pandemic to systematically analyze T cell reactivity against representative alpha (NL63) and beta (OC43) common cold CoVs (CCC). Similar to previous findings on SARS-CoV-2, the S, N, M, and nsp3 antigens were immunodominant for both viruses while nsp2 and nsp12 were immunodominant for NL63 and OC43, respectively. We next performed a comprehensive T cell epitope screen, identifying 78 OC43 and 87 NL63-specific epitopes. For a selected subset of 18 epitopes, we experimentally assessed the T cell capability to cross-recognize sequences from representative viruses belonging to alphaCoV, sarbecoCoV, and beta-non-sarbecoCoV groups. We found general conservation within the alpha and beta groups, with cross-reactivity experimentally detected in 89% of the instances associated with sequence conservation of >67%. However, despite sequence conservation, limited cross-reactivity was observed in the case of sarbecoCoV (50% of instances), indicating that previous CoV exposure to viruses phylogenetically closer to this subgenera is a contributing factor in determining cross-reactivity. Overall, these results provided critical insights in the development of future pan-CoV vaccines.


Subject(s)
Coronavirus Infections
9.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.13.507852

ABSTRACT

The pro- and anti-inflammatory pathways that determine the balance of inflammation and viral control during SARS-CoV-2 infection are not well understood. Here we examine the roles of IFN{gamma} and IL-10 in regulating inflammation, immune cell responses and viral replication during SARS-CoV-2 infection of rhesus macaques. IFN{gamma} blockade tended to decrease lung inflammation based on 18FDG-PET/CT imaging but had no major impact on innate lymphocytes, neutralizing antibodies, or antigen-specific T cells. In contrast, IL-10 blockade transiently increased lung inflammation and enhanced accumulation of virus-specific T cells in the lower airways. However, IL-10 blockade also inhibited the differentiation of virus-specific T cells into airway CD69+CD103+ TRM cells. While virus-specific T cells were undetectable in the nasal mucosa of all groups, IL-10 blockade similarly reduced the frequency of total TRM cells in the nasal mucosa. Neither cytokine blockade substantially affected viral load and infection ultimately resolved. Thus, in the macaque model of mild COVID-19, the pro- and anti-inflammatory effects of IFN{gamma} and IL-10 have no major role in control of viral replication. However, IL-10 has a key role in suppressing the accumulation of SARS-CoV-2-specific T cells in the lower airways, while also promoting TRM at respiratory mucosal surfaces.


Subject(s)
COVID-19 , Inflammation , Pneumonia
10.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.22.22279080

ABSTRACT

The SARS-CoV-2 Omicron variant has challenged the control of the COVID-19 pandemic even in highly vaccinated countries. While a second booster of mRNA vaccines improved the immunity against SARS-CoV-2, the humoral and cellular responses induced by a second booster of an inactivated SARS-CoV-2 vaccine have not been studied. In the context of a phase 3 clinical study, we report that a second booster of CoronaVac increased the neutralizing response against the ancestral virus yet showed poor neutralization against the Omicron variant. Additionally, isolated PBMCs displayed equivalent activation of specific CD4+ T lymphocytes and IFN-{gamma} production when stimulated with a mega-pool of peptides derived from the spike protein of the ancestral virus or the Omicron variant. In conclusion, a second booster dose of CoronaVac does not improve the neutralizing response against the Omicron variant compared with the first booster dose, yet it helps maintain a robust spike-specific CD4+ T cell response.


Subject(s)
COVID-19
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.05.22278464

ABSTRACT

BackgroundThe development of vaccines to control the COVID-19 pandemic progression is a worldwide priority. CoronaVac(R) is an inactivated SARS-CoV-2 vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. MethodsThis study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged [≥]18 years. Volunteers received two doses of CoronaVac(R) separated by two (0-14 schedule) or four weeks (0-28 schedule). 2,302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. ResultsBoth schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern between schedules. Stimulation of PBMCs with MPs induced the secretion of IFN-{gamma} and the expression of activation induced markers for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-{gamma} secretion. ConclusionsImmunization with CoronaVac(R) in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule. FundingMinistry of Health, Government of Chile, Confederation of Production and Commerce & Millennium Institute on Immunology and Immunotherapy, Chile. Clinical trial numberNCT04651790. summaryTwo immunization schedules were evaluated for the inactivated SARS-CoV-2 vaccine, Coronavac(R), with two doses of the vaccine separated by two or four weeks. We compared humoral and cellular immune responses, showing they are mostly similar, with differences in neutralization capacities.


Subject(s)
COVID-19
12.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.12.22276726

ABSTRACT

COVID-19 caused by SARS-CoV-2 can develop the disease with different degree of clinical severity including fatality. In addition to antibody responses the antigen specific T cells may play a critical role in defining this protective immune response against this virus. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell specific immune responses, we sought to evaluate the activation induced cell marker (AIM) and the status of different immune cell subsets during infection. A total of 115 participants were analyzed in this study which included participants with asymptomatic, mild, moderate and severe clinical symptoms. In addition, healthy controls (19 in each group) were analysed. Specimens from participants collected during the pre-pandemic period were also analyzed (n=10). Follow-up visits were conducted on day 7, 14, and 28 for all the cases since the enrollment (day 1). In this study 10 participants among the moderate and severe cases expired during the course of follow up. We observed a decrease in mucosa associated invariant T (MAIT) cell frequency on the initial days (day 1 and day 7) in comparison to later days of the COVID-19 infection. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of disease compared to both asymptomatic patients and healthy individuals. Moreover, we found AIM+ (both OX40+ CD137+ and OX40+ CD40L+) CD4+ T cells to show significant increase in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (specially spike peptide) compared to prepandemic controls, who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIM markers (CD137+ CD69+), which indicates the exhaustion of CD8+ T cells during COVID-19 infection. These findings suggest that the patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T cell response against shared viral determinants that ultimately induced the T cells to mount further immune responses to SARS-CoV-2.


Subject(s)
Carcinoma, Renal Cell , COVID-19
14.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.12.22273675

ABSTRACT

Background: SARSCoV2 mutations conferring escape from neutralizing antibodies can arise in immunocompromised patients with prolonged infection, but the conditions that facilitate immune escape are still not fully understood. Methods: We characterized endogenous immune responses, within host SARSCoV2 evolution, and autologous neutralization of the viral variants that arose in five immunocompromised patients with prolonged infection and B cell deficiencies. Results: In two patients treated with the monoclonal antibody bamlanivimab, viral resistance to autologous serum arose early and persisted for several months, accompanied by ongoing evolution in the spike protein. These patients exhibited deficiencies in both T and B cell arms, and one patient succumbed to disease. In contrast, we did not observe spike mutations in immunologically important regions in patients who did not receive exogenous antibodies or who received convalescent plasma and had intact T cell responses to SARSCoV2. Conclusions: Our results underscore the potential importance of multiple factors the absence of an effective endogenous immune response, persistent virus replication, and selective pressure such as single-agent bamlanivimab in promoting the emergence of SARS-CoV-2 mutations associated with immune evasion. These findings highlight the need for larger clinical studies in immunocompromised populations to better understand the ramifications of different therapies. Our results also confirm that patients with B cell deficiencies can elicit effector T cells and may suggest an important role for T cells in controlling infection, which is relevant to vaccines and therapeutics.


Subject(s)
Lymphoma, B-Cell , Pregnancy, Prolonged
15.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.05.487195

ABSTRACT

Background and Objectives Parkinson’s disease (PD) is associated with a heightened inflammatory state, including activated T cells. However, it is unclear whether these PD T cell responses are antigen specific or more indicative of generalized hyperresponsiveness. Our objective was to measure and compare antigen-specific T cell responses directed towards antigens derived from commonly encountered human pathogens/vaccines in patients with PD and age-matched healthy controls (HC). Methods Peripheral blood mononuclear cells (PBMCs) from 20 PD patients and 19 age-matched HCs were screened. Antigen specific T cell responses were measured by flow cytometry using a combination of the activation induced marker (AIM) assay and intracellular cytokine staining. Results Here we show that both PD patients and HCs show similar T cell activation levels to several antigens derived from commonly encountered human pathogens/vaccines in the general population. Similarly, we also observed no difference between HC and PD in the levels of CD4 and CD8 T cell derived cytokines produced in response to any of the common antigens tested. These antigens encompassed both viral (coronavirus, rhinovirus, respiratory syncytial virus, influenza, cytomegalovirus) and bacterial (pertussis, tetanus) targets. Conclusions These results suggest the T cell dysfunction observed in PD may not extend itself to abnormal responses to commonly encountered or vaccine-target antigens. Our study supports the notion that the targets of inflammatory T cell responses in PD may be more directed towards autoantigens like α-synuclein (α-syn) rather than common foreign antigens.


Subject(s)
Fragile X Syndrome , Cytomegalovirus Infections , Parkinson Disease , Myositis , Respiratory Syncytial Virus Infections
16.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.08.487674

ABSTRACT

NVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated subjects made CD4+ T cell responses after one and two doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+ T cells demonstrated IFN{gamma} production. Characterization of the vaccine-elicited CD4+ T cells revealed both circulating T follicular helper cells (cTFH) and TH1 cells (IFN{gamma}, TNF, and IL-2) were detectable within 7 days of the primary immunization. Spike-specific CD4+ T cells were correlated with the magnitude of the later SARS-CoV-2 neutralizing antibody titers, indicating that robust generation of CD4+ T cells, capable of supporting humoral immune responses, may be a key characteristic of NVX-CoV2373 which utilizes Matrix-M adjuvant.


Subject(s)
COVID-19
17.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.18.484953

ABSTRACT

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike--specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S and Novavax NVX-CoV2373 were examined longitudinally for 6 months. 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though memory CD8+ T cells were only detectable in 60-67% of subjects at 6 months. Ad26.COV2.S was not the strongest immunogen by any measurement, though the Ad26.COV2.S T cell, B cell, and antibody responses were relatively stable over 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in neutralizing antibodies, while memory T cells and B cells were comparatively stable over 6 months. These results of these detailed immunological evaluations may also be relevant for vaccine design insights against other pathogens.


Subject(s)
Protein S Deficiency , Pulmonary Disease, Chronic Obstructive , COVID-19
18.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.16.22272513

ABSTRACT

BackgroundThe Sinovac SARS-CoV-2 inactivated vaccine (CoronaVac) has been demonstrated to be safe, well tolerated, and efficacious in preventing mild and severe Covid-19. Although different studies have demonstrated its short-term immunogenicity, long-term cellular and humoral response evaluations are still lacking. MethodsCellular and humoral responses were assessed after enrollment of volunteers in the PROFISCOV phase 3 double-blind, randomized, placebo-controlled clinical trial to evaluate CoronaVac. Assays were performed using flow cytometry to evaluate cellular immune response and an antigen binding electrochemiluminescence assay to detect antigen-specific antibodies to the virus. ResultsFifty-three volunteers were selected for long term assessment of their SARS-CoV-2-specific immune responses. CD4+ T cell responses (including circulating follicular helper (cTfh, CD45RA- CXCR5+) expressing CD40L, as well as non-cTfh cells expressing CXCR3) were observed early upon the first vaccine dose, increased after the second dose, remaining stable for 6-months. Memory CD4+ T cells were detected in almost all vaccinees, the majority being central memory T cells. IgG levels against Wuhan/WH04/2020 N, S and receptor binding domain (RBD) antigens and the variants of concern (VOCs, including B.1.1.7/Alpha, B.1.351/Beta and P.1/Gamma) S and RBD antigens peaked 14 days after the second vaccine shot, and were mostly stable for a 1-year period. ConclusionsCoronaVac two-doses regimen is able to induce a potent and durable SARS-CoV-2 specific cellular response. The cellular reaction is part of a coordinated immune response that includes high levels of specific IgG levels against parental and SARS-CoV-2 VOC strains, still detected after one year. FundingFundacao Butantan, Instituto Butantan and Sao Paulo Research Foundation (FAPESP) (grants 2020/10127-1 and 2020/06409-1). This work has also been supported by NIH contract 75N93019C00065 (A.S, D.W). PATH facilitated reagent donations for this work with support by the Bill & Melinda Gates Foundation (INV-021239). Under the grant conditions of the foundation, a Creative Commons Attribution 4.0 generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission.


Subject(s)
COVID-19
19.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.15.484542

ABSTRACT

The SARS-CoV-2 Omicron variant of concern comprises three sublineages designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1. We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma neutralizing activity elicited by infection or seven clinical vaccines, with cross-neutralization of BA.2 being consistently more potent than that of BA.1, independent of the vaccine platform and number of doses. Although mRNA vaccines induced the greatest magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses, current vaccine boosting regimens may provide sufficient protection against Omicron-induced disease.

20.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.01.482548

ABSTRACT

Understanding immune memory to Common Cold Coronaviruses (CCCs) is relevant for assessing its potential impact on the outcomes of SARS-CoV-2 infection, and for the prospects of pan-corona vaccines development. We performed a longitudinal analysis, of pre-pandemic samples collected from 2016-2019. CD4+ T cells and antibody responses specific for CCC and to other respiratory viruses, and chronic or ubiquitous pathogens were assessed. CCC-specific memory CD4+ T cells were detected in most subjects, and their frequencies were comparable to those for other common antigens. Notably, responses to CCC and other antigens such as influenza and Tetanus Toxoid (TT) were sustained over time. CCC-specific CD4+ T cell responses were also associated with low numbers of HLA-DR+CD38+ cells and their magnitude did not correlate with yearly changes in the prevalence of CCC infections. Similarly, spike RBD-specific IgG responses for CCC were stable throughout the sampling period. Finally, high CD4+ T cell reactivity to CCC, but not antibody responses, was associated with high pre-existing SARS-CoV-2 immunity. Overall, these results suggest that the steady and sustained CCC responses observed in the study cohort are likely due to a relatively stable pool of CCC-specific memory CD4+ T cells instead of fast decaying responses and frequent reinfections.


Subject(s)
COVID-19 , Tetanus
SELECTION OF CITATIONS
SEARCH DETAIL